ŠžŃ‚Š·Ń‹Š²Ń‹ Š¾ ŠŠ»ŃŒŃ„Š°-Š¤Š¾Ń€ŠµŠŗс Alfa-Forex Š½Š° Brokers Ru

ŠŸŠ¾ŃŠŗŠ¾Š»ŃŒŠŗу Šŗ Š½Š°Š¼ Š²ŃŠµ чŠ°Ń‰Šµ стŠ°Š»Šø Š¾Š±Ń€Š°Ń‰Š°Ń‚ŃŒŃŃ Š¶ŠøтŠµŠ»Šø Š“руŠ³Šøх Š³Š¾Ń€Š¾Š“Š¾Š², Š¼Ń‹ рŠ°Š·Ń€Š°Š±Š¾Ń‚Š°Š»Šø Š¼ŠµŃ‚Š¾Š“ŠøŠŗу ŠæрŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŠµŠ½Šøя Š“ŠøстŠ°Š½Ń†ŠøŠ¾Š½Š½Š¾Š³Š¾ Š¾Š±ŃƒŃ‡ŠµŠ½Šøя. Š”ŠøстŠ°Š½Ń†ŠøŠ¾Š½Š½Š¾Šµ Š¾Š±ŃƒŃ‡ŠµŠ½ŠøŠµ ā€“ этŠ¾ фŠ¾Ń€Š¼Š° Š¾Š±ŃƒŃ‡ŠµŠ½Šøя, ŠŗŠ¾Ń‚Š¾Ń€Š°Ń ŠæŠ¾Š·Š²Š¾Š»ŃŠµŃ‚ учŠ°Ń‰ŠøŠ¼ŃŃ Š½ŠµŠ·Š°Š²ŠøсŠøŠ¼Š¾ Š¾Ń‚ Šøх Š¼ŠµŃŃ‚Š¾Š¶ŠøтŠµŠ»ŃŒŃŃ‚Š²Š° Š¾Š±ŃƒŃ‡Š°Ń‚ŃŒŃŃ Š² Ā«Š’Ń‹ŃŃˆŠµŠ¹ шŠŗŠ¾Š»Šµ тŠ¾Ń€Š³Š¾Š²Š»Šø Š½Š° Š±ŠøрŠ¶Šµ Šø ŠøŠ½Š²ŠµŃŃ‚ŠøрŠ¾Š²Š°Š½ŠøяĀ». Š£Ń‡Š°Ń‰ŠøŠ¼ŃŃ Š“ŠøстŠ°Š½Ń†ŠøŠ¾Š½Š½Š¾Š¹ фŠ¾Ń€Š¼Ń‹ Š¾Š±ŃƒŃ‡ŠµŠ½Šøя ŠæрŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŃŃŽŃ‚ся ŠŗŠ¾Š½ŃŃƒŠ»ŃŒŃ‚Š°Ń†ŠøŠø Š½Š°ŃˆŠøх сŠæŠµŃ†ŠøŠ°Š»ŠøстŠ¾Š² Š² рŠµŠ¶ŠøŠ¼Šµ рŠµŠ°Š»ŃŒŠ½Š¾Š³Š¾ Š²Ń€ŠµŠ¼ŠµŠ½Šø – ON-LINE. Š”ŠøстŠµŠ¼Ń‹ Š°Š½Š°Š»ŠøŠ·Š° фŠøŠ½Š°Š½ŃŠ¾Š²Ń‹Ń… рыŠ½ŠŗŠ¾Š², ŠøсŠæŠ¾Š»ŃŒŠ·ŃƒŠµŠ¼Ń‹Šµ ŠæрŠø ŠæŠ¾ŃŃ‚Ń€Š¾ŠµŠ½ŠøŠø ŠŠ” ā€“ тŠµŃ…Š½ŠøчŠµŃŠŗŠøŠ¹ Š°Š½Š°Š»ŠøŠ·, фуŠ½Š“Š°Š¼ŠµŠ½Ń‚Š°Š»ŃŒŠ½Ń‹Š¹ Š°Š½Š°Š»ŠøŠ·, стŠ°Ń‚ŠøстŠøчŠµŃŠŗŠøŠ¹ Š°Š½Š°Š»ŠøŠ·. Š¢ŠµŃ…Š½ŠøчŠµŃŠŗŠøŠ¹ Š°Š½Š°Š»ŠøŠ· ā€“ ŠæŠ¾ŃŃ‚ŃƒŠ»Š°Ń‚Ń‹, ŠæŠ¾Š½ŃŃ‚ŠøŠµ трŠµŠ½Š“Š°, ŠŗŠ¾Š½ŃŠ¾Š»ŠøŠ“Š°Ń†ŠøŠø. Š˜Š½ŃŃ‚Ń€ŃƒŠ¼ŠµŠ½Ń‚Ń‹ Š¢Š ā€“ Š»ŠøŠ½ŠøŠø трŠµŠ½Š“Š°, ŠøŠ½Š“ŠøŠŗŠ°Ń‚Š¾Ń€Ń‹, Š¾ŃŃ†ŠøŠ»Š»ŃŃ‚Š¾Ń€Ń‹, фрŠ°ŠŗтŠ°Š»Ń‹.

Š”ŠøстŠµŠ¼Š° ŠŗŠ¾ŠæŠøрŠ¾Š²Š°Š½Šøя сŠ“ŠµŠ»Š¾Šŗ ForexCopy

ŠŸŠ»Š°Š²Š°ŃŽŃ‰ŠøŠµ сŠæрŠµŠ“ы Šø Š³ŠøŠ±ŠŗŠ¾ŃŃ‚ŃŒ тŠ¾Ń€Š³Š¾Š²Š»Šø

Š¢Ń€ŠµŠ¹Š“ŠµŃ€Š°Š¼, тŠ¾Ń€Š³ŃƒŃŽŃ‰ŠøŠ¼ Š±Š¾Š»ŃŒŃˆŠøŠ¼Šø Š¾Š±ŃŠŠµŠ¼Š°Š¼Šø, Š±Ń€Š¾ŠŗŠµŃ€Ń‹ ŠæрŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŃŃŽŃ‚ Š±Š¾Š»ŠµŠµ Š³ŠøŠ±ŠŗŠøŠµ усŠ»Š¾Š²Šøя. ŠŠµŠŗŠ¾Ń‚Š¾Ń€Ń‹Šµ ŠŗŠ¾Š¼ŠæŠ°Š½ŠøŠø ŠæрŠµŠ“Š»Š°Š³Š°ŃŽŃ‚ ŠæрŠ¾Š³Ń€Š°Š¼Š¼Ń‹ Š²Š¾Š·Š²Ń€Š°Ń‚Š° чŠ°ŃŃ‚Šø рŠ°Š·Š½Šøцы цŠµŠ½ Š½Š° Š¤Š¾Ń€ŠµŠŗс ŠøŠ»Šø Rebate-сŠµŃ€Š²Šøс. ŠœŠ¾Š¼ŠµŠ½Ń‚Š°Š»ŃŒŠ½Š¾ Š¼Š¾Š¶Š½Š¾ Š²Ń‹Š²ŠµŃŃ‚Šø Š“ŠµŠ½ŃŒŠ³Šø с тŠ¾Ń€Š³Š¾Š²Š¾Š³Š¾ счŠµŃ‚Š° Š±ŠµŠ· ручŠ½Š¾Š³Š¾ ŠæŠ¾Š“тŠ²ŠµŃ€Š¶Š“ŠµŠ½Šøя с Š½Š°ŃˆŠµŠ¹ стŠ¾Ń€Š¾Š½Ń‹. ŠšŠ»ŃŽŃ‡ŠµŠ²Ń‹Š¼ ŠæŠ°Ń€Ń‚Š½ŠµŃ€Š°Š¼ фŠøрŠ¼Š° Š³Š¾Ń‚Š¾Š²Š° Š¾Ń‚Š“Š°Š²Š°Ń‚ŃŒ Š“Š¾ 60% Š¾Ń‚ сŠ²Š¾ŠµŠ³Š¾ Š·Š°Ń€Š°Š±Š¾Ń‚ŠŗŠ°. Š’Š²Š¾Š“ Šø Š²Ń‹Š²Š¾Š“ срŠµŠ“стŠ² Š½Š°/с тŠ¾Ń€Š³Š¾Š²Š¾Š³Š¾ счётŠ° чŠµŃ€ŠµŠ· Moneybookers Š¾ŃŃƒŃ‰ŠµŃŃ‚Š²Š»ŃŠµŃ‚ся чŠµŃ€ŠµŠ· Š»ŠøчŠ½Ń‹Š¹ ŠŗŠ°Š±ŠøŠ½ŠµŃ‚.

JPB (Just Profit Broker) Š¾Ń‚Š·Ń‹Š²Ń‹: хŠ¾Ń€Š¾ŃˆŠøŠ¹ Š²Ń‹Š±Š¾Ń€ ŠøŠ»Šø Š½ŠµŃ‚?

Š’сŠµŠ¼ трŠµŠ¹Š“ŠµŃ€Š°Š¼, ŠæŠ¾ŠæŠ¾Š»Š½ŃŃŽŃ‰ŠøŠ¼ Š“ŠµŠæŠ¾Š·Šøт, Š±Ń€Š¾ŠŗŠµŃ€ Instaforex ŠæрŠµŠ“Š»Š°Š³Š°ŠµŃ‚ Š“Š¾ŠæŠ¾Š»Š½ŠøтŠµŠ»ŃŒŠ½Ń‹Šµ Š±Š¾Š½ŃƒŃŃ‹. Š‘Š¾Š½ŃƒŃŃ‹ Š¾Ń‚Š»ŠøчŠ°ŃŽŃ‚ся рŠ°Š·Š¼ŠµŃ€Š¾Š¼, усŠ»Š¾Š²ŠøяŠ¼Šø Š·Š°Ń‡ŠøсŠ»ŠµŠ½Šøя Šø ŠæрŠ°Š²ŠøŠ»Š°Š¼Šø ŠøсŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½Šøя Š² тŠ¾Ń€Š³Š¾Š²Š»Šµ. ŠŸŃ€ŠøŠ±Ń‹Š»ŃŒ, ŠæŠ¾Š»ŃƒŃ‡ŠµŠ½Š½Š°Ń с ŠøсŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¼ Š»ŃŽŠ±Š¾Š³Š¾ Š±Š¾Š½ŃƒŃŠ°, Š¼Š¾Š¶ŠµŃ‚ Š±Ń‹Ń‚ŃŒ Š²Ń‹Š²ŠµŠ“ŠµŠ½Š° с тŠ¾Ń€Š³Š¾Š²Š¾Š³Š¾ счŠµŃ‚Š° Š±ŠµŠ· Š¾Š³Ń€Š°Š½ŠøчŠµŠ½ŠøŠ¹. Š—Š“рŠ°Š²ŃŃ‚Š²ŃƒŠ¹Ń‚Šµ, Š½Š°Š¼ Š¶Š°Š»ŃŒ, чтŠ¾ у Š²Š°Ń сŠ»Š¾Š¶ŠøŠ»Š¾ŃŃŒ Š½ŠµŠ¾Š“Š½Š¾Š·Š½Š°Ń‡Š½Š¾Šµ Š¼Š½ŠµŠ½ŠøŠµ Š¾Ń‚Š½Š¾ŃŠøтŠµŠ»ŃŒŠ½Š¾ Š½Š°ŃˆŠµŠ¹ ŠŗŠ¾Š¼ŠæŠ°Š½ŠøŠø. Š’ Š¾Š±Ń€Š°Ń‰ŠµŠ½Šøях сŠ¾Š²ŠµŃ‚ŃƒŠµŠ¼ срŠ°Š·Ńƒ уŠŗŠ°Š·Ń‹Š²Š°Ń‚ŃŒ Š²ŃŠµ Š“ŠµŃ‚Š°Š»Šø Šø сŠŗрŠøŠ½ŃˆŠ¾Ń‚Ń‹ ŠæрŠ¾Š±Š»ŠµŠ¼Ń‹ Š“Š»Ń Š±Ń‹ŃŃ‚Ń€Š¾Š³Š¾ рŠ°Š·Ń€ŠµŃˆŠµŠ½Šøя сŠøтуŠ°Ń†ŠøŠø. Š•ŃŠ»Šø у Š²Š°Ń ŠµŃŃ‚ŃŒ Š½ŠµŠ·Š°Š²ŠµŃ€ŃˆŠµŠ½Š½Ń‹Šµ ŠŗŠµŠ¹ŃŃ‹, ŠæŠ¾Š¶Š°Š»ŃƒŠ¹ŃŃ‚Š°, уŠŗŠ°Š¶ŠøтŠµ Š½Š¾Š¼ŠµŃ€ Š²Š°ŃˆŠµŠ³Š¾ счŠµŃ‚Š°.

STP счŠµŃ‚ (Straight Through Processing)

Š—Š°Ń‚ŠµŠ¼ Š¾Š½ хŠµŠ“Š¶ŠøруŠµŃ‚ Š¾Ń€Š“ŠµŃ€Š° с сŠ¾Š±ŃŃ‚Š²ŠµŠ½Š½Ń‹Š¼Šø ŠæŠ¾ŃŃ‚Š°Š²Ń‰ŠøŠŗŠ°Š¼Šø Š»ŠøŠŗŠ²ŠøŠ“Š½Š¾ŃŃ‚Šø. Š¢Š°Šŗ ŠŗŠ°Šŗ Š±Ń€Š¾ŠŗŠµŃ€ ŠøщŠµŃ‚ ŠæрŠøŠ±Ń‹Š»ŃŒ Š² этŠ¾Š¹ Š¾ŠæŠµŃ€Š°Ń†ŠøŠø, цŠµŠ½Š°, ŠŗŠ¾Ń‚Š¾Ń€ŃƒŃŽ трŠµŠ¹Š“ŠµŃ€ ŠæŠ¾Š»ŃƒŃ‡Š°ŠµŃ‚ Š¾Ń‚ Š½ŠµŠ³Š¾, Š±ŃƒŠ“ŠµŃ‚ Š½ŠµŠ¼Š½Š¾Š³Š¾ Š²Ń‹ŃˆŠµ, чŠµŠ¼ Š»ŃƒŃ‡ŃˆŠ°Ń цŠµŠ½Š°, ŠŗŠ¾Ń‚Š¾Ń€ŃƒŃŽ Š±Ń€Š¾ŠŗŠµŃ€ Š¼Š¾Š¶ŠµŃ‚ ŠæŠ¾Š»ŃƒŃ‡Šøть Š¾Ń‚ ŠæŠ¾ŃŃ‚Š°Š²Ń‰ŠøŠŗŠ° Š»ŠøŠŗŠ²ŠøŠ“Š½Š¾ŃŃ‚Šø Š½Š°ŠæряŠ¼ŃƒŃŽ. Š˜Š“ŠµŠ°Š»ŃŒŠ½Š¾ ŠæŠ¾Š“хŠ¾Š“Šøт Š“Š»Ń ŠŗрŠ°Ń‚ŠŗŠ¾ŃŃ€Š¾Ń‡Š½Ń‹Ń… ŠŗŠ¾Š½Ń‚Ń€Š°ŠŗтŠ¾Š², Š³Š“Šµ Š»ŃƒŃ‡ŃˆŠµ Š¾ŠæŠµŃ€ŠøрŠ¾Š²Š°Ń‚ŃŒ уŠ·ŠŗŠøŠ¼ рŠ°Š·Š¼ŠµŃ€Š¾Š¼ ŠŗŠ¾Š¼ŠøссŠøŠø.

3) Š‘Š¾Š½ŃƒŃŠ½Ń‹Šµ срŠµŠ“стŠ²Š°, ŠæŠ¾Š»ŃƒŃ‡ŠµŠ½Š½Ń‹Šµ ŠæŠ¾ Š°ŠŗцŠøŠø, яŠ²Š»ŃŃŽŃ‚ся Š½Šµ сŠ½ŠøŠ¼Š°ŠµŠ¼Ń‹Š¼ Š¾ŃŃ‚Š°Ń‚ŠŗŠ¾Š¼ Šø Š½Šµ Š¼Š¾Š³ŃƒŃ‚ Š±Ń‹Ń‚ŃŒ Š²Ń‹Š²ŠµŠ“ŠµŠ½Ń‹ с тŠ¾Ń€Š³Š¾Š²Š¾Š³Š¾ счŠµŃ‚Š°. ŠŸŃ€Šø этŠ¾Š¼ ŠæрŠøŠ±Ń‹Š»ŃŒŃŽ, ŠæŠ¾Š»ŃƒŃ‡ŠµŠ½Š½Š¾Š¹ Š² рŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Šµ сŠ¾Š²ŠµŃ€ŃˆŠµŠ½Šøя тŠ¾Ń€Š³Š¾Š²Ń‹Ń… Š¾ŠæŠµŃ€Š°Ń†ŠøŠ¹ с ŠøсŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¼ этŠøх срŠµŠ“стŠ², ŠŗŠ»ŠøŠµŠ½Ń‚ Š¼Š¾Š¶ŠµŃ‚ рŠ°ŃŠæŠ¾Ń€ŃŠ¶Š°Ń‚ŃŒŃŃ Š±ŠµŠ· Š¾Š³Ń€Š°Š½ŠøчŠµŠ½ŠøŠ¹. ŠžŃ‚Š¼ŠµŃ‚ŠøŠ¼ Š»Šøшь, чтŠ¾ Š² сŠ»ŃƒŃ‡Š°Šµ сŠøŠ»ŃŒŠ½Ń‹Ń… цŠµŠ½Š¾Š²Ń‹Ń… рŠ°Š·Ń€Ń‹Š²Š¾Š², т.Šµ. ŠšŠ¾Š³Š“Š° цŠµŠ½Š° ŠæŠµŃ€ŠµŠæрыŠ³Š½ŃƒŠ»Š° Š²Š°Ńˆ Š¾Ń€Š“ŠµŃ€ ŠøŠ»Šø стŠ¾Šæ ŠæрŠøŠŗŠ°Š·, Š¾Š½Šø Š¼Š¾Š³ŃƒŃ‚ ŠøсŠæŠ¾Š»Š½ŃŃ‚ŃŒŃŃ с ŠæрŠ¾ŃŠŗŠ°Š»ŃŒŠ·Ń‹Š²Š°Š½ŠøŠµŠ¼, Š¼Š¾Š³ŃƒŃ‚ Š½Šµ ŠøсŠæŠ¾Š»Š½ŃŃ‚ŃŒŃŃ, Š¼Š¾Š³ŃƒŃ‚ ŠøсŠæŠ¾Š»Š½ŃŃ‚ŃŒŃŃ ŠæŠ¾ Š·Š°ŃŠ²Š»ŠµŠ½Š½Š¾Š¹ цŠµŠ½Šµ, Š²ŃŠµ этŠ¾ Š·Š°Š²ŠøсŠøт Š¾Ń‚ Š±Ń€Š¾ŠŗŠµŃ€Š°. Š’ этŠ¾Š¼ сŠ»ŃƒŃ‡Š°Šµ Š±Ń€Š¾ŠŗŠµŃ€Ńƒ Š½ŠµŠ²Ń‹Š³Š¾Š“Š½Š¾ ŠøсŠæŠ¾Š»Š½ŃŃ‚ŃŒ Š²Š°Ńˆ Š¾Ń€Š“ŠµŃ€, т.Šŗ.

Š¢Š°ŠŗŠ¶Šµ Š½Š° сŠ°Š¹Ń‚Šµ уŠæŠ¾Š¼ŠøŠ½Š°ŠµŃ‚ся Š»ŠøцŠµŠ½Š·Šøя Š¾Ń‚ рŠµŠ³ŃƒŠ»ŃŃ‚Š¾Ń€Š° ŠøŠ· ŠµŃ‰Šµ Š¾Š“Š½Š¾Š³Š¾ Š³Š¾ŃŃƒŠ“Š°Ń€ŃŃ‚Š²Š° ā€“ Š”ŠµŠ½Ń‚-Š’ŠøŠ½ŃŠµŠ½Ń‚ Šø Š“Ń€ŠµŠ½Š°Š“ŠøŠ½Ń‹. Š­Ń‚Š° Š»ŠøцŠµŠ½Š·Šøя Š²Ń‹Š“Š°Š½Š° рŠ¾Š“стŠ²ŠµŠ½Š½Š¾Š¹ ŠŗŠ¾Š¼ŠæŠ°Š½ŠøŠø Insta Service Ltd. Š’ чŠµŠ¼ Š¾Ń‚Š»ŠøчŠøя Š¼ŠµŠ¶Š“у Š»ŠøцŠµŠ½Š·ŠøяŠ¼Šø, Šø чтŠ¾ ŠøŠ¼ŠµŠ½Š½Š¾ ŠŗŠ°Š¶Š“Š°Ń ŠøŠ· Š½Šøх рŠµŠ³ŃƒŠ»ŠøруŠµŃ‚ ā€“ Š²Ń‹ŃŃŠ½Šøть ŠæŠ¾Š“рŠ¾Š±Š½Š¾ŃŃ‚Šø Š² ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠŗŠµ Š½Š°Š¼ Š½Šµ уŠ“Š°Š»Š¾ŃŃŒ. Š­Ń‚Š¾ сŠ²ŠøŠ“ŠµŃ‚ŠµŠ»ŃŒŃŃ‚Š²ŃƒŠµŃ‚, чтŠ¾ Š¼Ń‹ ŠøŠ¼ŠµŠµŠ¼ Š“ŠµŠ»Š¾ с ŠµŠ²Ń€Š¾ŠæŠµŠ¹ŃŠŗŠøŠ¼ ŠæŠ¾Š“рŠ°Š·Š“ŠµŠ»ŠµŠ½ŠøŠµŠ¼ Š±Ń€Š¾ŠŗŠµŃ€Š°, ŠŗŠ¾Ń‚Š¾Ń€Š¾Šµ рŠµŠ³ŃƒŠ»ŠøруŠµŃ‚ся Š½Š° ŠšŠøŠæрŠµ.

ŠŸŠ»Š°Š²Š°ŃŽŃ‰ŠøŠµ сŠæрŠµŠ“ы Šø Š³ŠøŠ±ŠŗŠ¾ŃŃ‚ŃŒ тŠ¾Ń€Š³Š¾Š²Š»Šø

Š’ 2023 Š³Š¾Š“у IB ŠæŠ¾Š·Š²Š¾Š»ŃŠµŃ‚ рŠµŠ·ŠøŠ“ŠµŠ½Ń‚Š°Š¼ Šø Š³Ń€Š°Š¶Š“Š°Š½Š°Š¼ Š Š¤ Š¾Ń‚ŠŗрыŠ²Š°Ń‚ŃŒ счŠµŃ‚Š° Šø тŠ¾Ń€Š³Š¾Š²Š°Ń‚ŃŒ Š½Š° Š²ŃŠµŃ… рыŠ½ŠŗŠ°Ń… ŠæŠ¾Ń‡Ń‚Šø Š±ŠµŠ· Š¾Š³Ń€Š°Š½ŠøчŠµŠ½ŠøŠ¹. ŠžŠ“Š½Š°ŠŗŠ¾ стŠ¾Šøт учŠøтыŠ²Š°Ń‚ŃŒ, чтŠ¾ Š½Š°Š“ Š±Ń€Š¾ŠŗŠµŃ€Š°Š¼Šø стŠ¾ŃŃ‚ рŠµŠ³ŃƒŠ»ŃŃ‚Š¾Ń€Ń‹, ŠŗŠ¾Ń‚Š¾Ń€Ń‹Šµ Š² Š»ŃŽŠ±Š¾Š¹ Š¼Š¾Š¼ŠµŠ½Ń‚ Š¼Š¾Š³ŃƒŃ‚ ā€œŠ·Š°Ń‚яŠ½ŃƒŃ‚ŃŒ Š³Š°Š¹ŠŗŠøā€. ŠœŃ‹ ŠæŠ¾Š“Š³Š¾Ń‚Š¾Š²ŠøŠ»Šø Š¾Š±Š·Š¾Ń€Š½ŃƒŃŽ стŠ°Ń‚ŃŒŃŽ ŠæŠ¾ Š±Ń€Š¾ŠŗŠµŃ€Ńƒ Interactive Brokers. Š Š°ŃŃŠŗŠ°Š·Ń‹Š²Š°ŠµŠ¼, ŠŗŠ°ŠŗŠøŠµ Š“Š¾ŠŗуŠ¼ŠµŠ½Ń‚Ń‹ Š½ŃƒŠ¶Š½Ń‹ Š“Š»Ń рŠµŠ³ŠøстрŠ°Ń†ŠøŠø счŠµŃ‚Š° у Š±Ń€Š¾ŠŗŠµŃ€Š° Šø с ŠŗŠ°ŠŗŠ¾Š¹ суŠ¼Š¼Š¾Š¹ Š¼Š¾Š¶Š½Š¾ Š¾Ń‚Šŗрыть счŠµŃ‚.

ŠŸŃ‹Ń‚Š°Š»ŃŃ сŠæŠ°ŃŃ‚Šø Š¾ŃŃ‚Š°Ń‚ŠŗŠø сŠ²Š¾ŠµŠ³Š¾ Š“ŠµŠæŠ¾Š·ŠøтŠ° ŠæŠ¾ŃŠ»Šµ Š½ŠµŃƒŠ“Š°Ń‡Š½Š¾Š¹ сŠ“ŠµŠ»ŠŗŠø, Š½Š¾ этŠø рŠµŠ±ŃŃ‚Š° ŠæрŠ¾ŃŃ‚Š¾ ŠøŠ³Š½Š¾Ń€Šøруют. ŠŸŠ¾Ń‚ŠµŃ€ŃŠ» Š¾ŠŗŠ¾Š»Š¾ 800 Š“Š¾Š»Š»Š°Ń€Š¾Š² сшŠ°, Š° Š¾Š½Šø Š“Š°Š¶Šµ ŠŗŠ¾Š¼ŠæŠµŠ½ŃŠøрŠ¾Š²Š°Ń‚ŃŒ Š½Šµ Š“уŠ¼Š°ŃŽŃ‚. ŠžŠ±Ń…Š¾Š“ŠøтŠµ стŠ¾Ń€Š¾Š½Š¾Š¹, ŠµŃŠ»Šø Š½Šµ хŠ¾Ń‚ŠøтŠµ Š¾ŠŗŠ°Š·Š°Ń‚ŃŒŃŃ Š² Š¼Š¾ŠµŠ¹ шŠŗурŠµ. Š”Š°Š¼Š¾Š·Š°Š½ŃŃ‚Ń‹Šµ ŠæŠ»Š°Ń‚ŃŃ‚ Š½Šµ Š±Š¾Š»ŃŒŃˆŠµ %, Š° ŠæрŠ¾ŃŃ‚Š¾ Š¾Ń‚Š“ŠµŠ»ŃŒŠ½Š¾ Š·Š° Š“Š¾Ń…Š¾Š“ Š¾Ń‚ сŠ°Š¼Š¾Š·Š°Š½ŃŃ‚Š¾ŃŃ‚Šø Šø Š¾Ń‚Š“ŠµŠ»ŃŒŠ½Š¾ Š·Š° Š“Š¾Ń…Š¾Š“ Š¾Ń‚ тŠ¾Ń€Š³Š¾Š²Š»Šø Š½Š° фŠ¾Ń€ŠµŠŗсŠµ. Š¢Š°ŠŗŠ¶Šµ эŠŗсŠæŠµŃ€Ń‚Š½Ń‹Š¹ Š¾Ń‚Š“ŠµŠ» фŠøрŠ¼Ń‹ ŠæрŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŃŠµŃ‚ ŠŗŠ»ŠøŠµŠ½Ń‚Š°Š¼ ŠøŠ½Š²ŠµŃŃ‚ŠøцŠøŠ¾Š½Š½Ń‹Šµ сŠ¾Š²ŠµŃ‚Ń‹, усŠ»ŃƒŠ³Šø ŠæŠ¾ уŠæрŠ°Š²Š»ŠµŠ½Šøю Š°ŠŗтŠøŠ²Š°Š¼Šø Šø тŠ¾Ń€Š³Š¾Š²Ń‹Šµ рŠµŠŗŠ¾Š¼ŠµŠ½Š“Š°Ń†ŠøŠø.

Š’Š¾ Š²Ń€ŠµŠ¼Ń Š¾Š±ŃƒŃ‡ŠµŠ½Šøя Š½Š¾Š²ŠøчŠŗŠø ŠæрŠ°ŠŗтŠøŠŗуются Š² Š·Š°ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠø сŠ“ŠµŠ»Š¾Šŗ Š½Š° ŠæŠ¾ŠŗуŠæŠŗу/ ŠæрŠ¾Š“Š°Š¶Ńƒ Š² рŠµŠ¶ŠøŠ¼Šµ рŠµŠ°Š»ŃŒŠ½Š¾Š³Š¾ Š²Ń€ŠµŠ¼ŠµŠ½Šø. ŠŸŠ¾ Š¾Ń‚Š·Ń‹Š²Š°Š¼ Š¾ JD Market Expo, ŠøŠ¼ŠµŠ½Š½Š¾ тŠ°ŠŗŠøŠµ Š·Š°Š½ŃŃ‚Šøя ŠæŠ¾Š¼Š¾Š³Š°ŃŽŃ‚ Š¾Š±Ń€ŠµŃŃ‚Šø уŠ²ŠµŃ€ŠµŠ½Š½Š¾ŃŃ‚ŃŒ. ŠŠ°Ń‡ŠøŠ½Š°ŃŽŃ‰ŠøŠµ Š¾Š½Š»Š°Š¹Š½-трŠµŠ¹Š“ŠµŃ€Ń‹ учŠ°Ń‚ся сŠ¼ŃŠ³Ń‡Š°Ń‚ŃŒ ŠøŠ½Š²ŠµŃŃ‚ŠøцŠøŠ¾Š½Š½Ń‹Šµ рŠøсŠŗŠø Šø уŠæрŠ°Š²Š»ŃŃ‚ŃŒ ŠøŠ¼Šø, рŠ°Š·Ń€Š°Š±Š°Ń‚Ń‹Š²Š°Ń‚ŃŒ стрŠ°Ń‚ŠµŠ³ŠøŠø Š±ŠµŠ·ŃƒŠ±Ń‹Ń‚Š¾Ń‡Š½Š¾Š¹ тŠ¾Ń€Š³Š¾Š²Š»Šø.

  • Š‘Ń‹Š²Š°ŠµŃ‚, чтŠ¾ Š“ŠµŠ½ŃŒŠ³Šø ŠæŠ¾ŃŃ‚ŃƒŠæŠ°ŃŽŃ‚, Š½Š¾ счŠµŃ‚ Š½Šµ Š¾Š“Š¾Š±Ń€ŃŠµŃ‚ся.
  • ŠšŠ¾Š¼ŠøссŠøŠø Š² Interactive Brokers ŠøŠ¼ŠµŃŽŃ‚ сŠ»Š¾Š¶Š½ŃƒŃŽ Š¼Š½Š¾Š³Š¾ŃƒŃ€Š¾Š²Š½ŠµŠ²ŃƒŃŽ струŠŗтуру.
  • ŠŠ°ŠæрŠøŠ¼ŠµŃ€, Š“ŠøŠ»ŠµŃ€ Š² сŠæŠµŃ†ŠøфŠøŠŗŠ°Ń†ŠøŠø уŠŗŠ°Š·Ń‹Š²Š°ŠµŃ‚, чтŠ¾ ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŠµŠ»Šø ŠæŠ»Š°Š²Š°ŃŽŃ‰ŠøŠµ ā€” Š¾Ń‚ 0,7 ŠæуŠ½ŠŗтŠ°.
  • ŠŠ°ŃˆŠµŠ¹ цŠµŠ»ŃŒŃŽ яŠ²Š»ŃŠµŃ‚ся ŠæрŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠµ ŠæŠ¾Š»ŠµŠ·Š½Š¾Š¹ Š“Š»Ń трŠµŠ¹Š“ŠµŃ€Š¾Š² ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠø, Š² чŠ°ŃŃ‚Š½Š¾ŃŃ‚Šø Š¾Š±Š·Š¾Ń€Ń‹ Š±Ń€Š¾ŠŗŠµŃ€ŃŠŗŠøх ŠŗŠ¾Š¼ŠæŠ°Š½ŠøŠ¹, тŠ¾Ń€Š³Š¾Š²Ń‹Ń… ŠøŠ½ŃŃ‚Ń€ŃƒŠ¼ŠµŠ½Ń‚Š¾Š², стрŠ°Ń‚ŠµŠ³ŠøŠ¹, ŠøŠ½Š“ŠøŠŗŠ°Ń‚Š¾Ń€Š¾Š² Šø Š“руŠ³ŠøŠµ Š¾Š±ŃƒŃ‡Š°ŃŽŃ‰ŠøŠµ Š¼Š°Ń‚ŠµŃ€ŠøŠ°Š»Ń‹.
  • Š’ этŠ¾Š¼ сŠ»ŃƒŃ‡Š°Šµ Š±Ń€Š¾ŠŗŠµŃ€ Š·Š°Ń€Š°Š±Š°Ń‚Ń‹Š²Š°ŠµŃ‚ Š½Šµ Š½Š° ŠæŠ¾Ń‚ŠµŃ€ŃŃ… ŠøŠ³Ń€Š¾ŠŗŠ°, Š° Š·Š° счёт ŠæŠ»Š°Š²Š°ŃŽŃ‰Šøх сŠæрŠµŠ“Š¾Š² ŠøŠ»Šø Š“Š¾ŠæŠ¾Š»Š½ŠøтŠµŠ»ŃŒŠ½Ń‹Ń… ŠŗŠ¾Š¼ŠøссŠøŠ¹ (Š»ŠøŠ±Š¾ Šøх ŠŗŠ¾Š¼Š±ŠøŠ½Š°Ń†ŠøŠø).

ŠžŃŠ¾Š±ŠµŠ½Š½Š¾ŃŃ‚Šø ŠæŠ¾ŠæŠ¾Š»Š½ŠµŠ½Šøя рŠ°Š·Š½ŃŃ‚ся Š² Š·Š°Š²ŠøсŠøŠ¼Š¾ŃŃ‚Šø Š¾Ń‚ юрŠøсŠ“ŠøŠŗцŠøŠø, Š² ŠŗŠ¾Ń‚Š¾Ń€Š¾Š¹ Š¾Ń‚Šŗрыт счŠµŃ‚. ŠŠ¾ Š² Š»ŃŽŠ±Š¾Š¼ сŠ»ŃƒŃ‡Š°Šµ Š±Ń€Š¾ŠŗŠµŃ€ ŠøŠ“ŠµŃ‚ Š½Š°Š²ŃŃ‚Ń€ŠµŃ‡Ńƒ ŠŗŠ»ŠøŠµŠ½Ń‚Š°Š¼, ŠŗŠ¾Ń‚Š¾Ń€Ń‹Šµ Š·Š°Š²Š¾Š“ят Š“ŠµŠ½ŃŒŠ³Šø. ŠŠ° Š²Ń‚Š¾Ń€Š¾Š¼ шŠ°Š³Šµ Š¾Ń‚ŠŗрытŠøя счŠµŃ‚Š° Š²Š°Š¼ Š½Š°Š“Š¾ Š±ŃƒŠ“ŠµŃ‚ Š²Š²ŠµŃŃ‚Šø ŠæŠµŃ€ŃŠ¾Š½Š°Š»ŃŒŠ½ŃƒŃŽ ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†Šøю Šø фŠøŠ·ŠøчŠµŃŠŗŠøŠ¹ Š°Š“рŠµŃ ŠæрŠ¾Š¶ŠøŠ²Š°Š½Šøя. Š’Š¾Š·Š¼Š¾Š¶Š½Š¾, Š²Ń‹ Š·Š°Š¼ŠµŃ‚ŠøŠ»Šø, чтŠ¾ ECN Šø Scalping Š½ŠøчŠµŠ¼ Š½Šµ Š¾Ń‚Š»ŠøчŠ°ŃŽŃ‚ся. ŠœŃ‹ тŠ¾Š¶Šµ Š·Š°Š¼ŠµŃ‚ŠøŠ»Šø, Šø ŠæŠ¾ŠøŠ½Ń‚ŠµŃ€ŠµŃŠ¾Š²Š°Š»Šøсь Š² ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠŗŠµ ā€“ ŠŗŠ°ŠŗŠ°Ń ŠæрŠøчŠøŠ½Š°? ŠžŠŗŠ°Š·Ń‹Š²Š°ŠµŃ‚ся, чтŠ¾ ŠæрŠµŠ“Š»Š¾Š¶ŠµŠ½ŠøŠµ 2 ŠøŠ“ŠµŠ½Ń‚ŠøчŠ½Ń‹Ń… счŠµŃ‚Š¾Š² с рŠ°Š·Š½Ń‹Š¼Šø Š½Š°Š·Š²Š°Š½ŠøяŠ¼Šø яŠ²Š»ŃŠµŃ‚ся ŠøŠ½ŠøцŠøŠ°Ń‚ŠøŠ²Š¾Š¹ ŠæŠ¾ ŠæрŠ¾ŃŃŒŠ±Šµ ŠŗŠ»ŠøŠµŠ½Ń‚Š¾Š².

ŠšŠ¾Š³Š“Š° Š½Š°Ń‡Š°Š» рŠ°Š·Š±ŠøрŠ°Ń‚ŃŒŃŃ Šø Š·Š°Š“Š°Š²Š°Ń‚ŃŒ Š²Š¾ŠæрŠ¾ŃŃ‹, Š¾Š±Š½Š°Ń€ŃƒŠ¶ŠøŠ», чтŠ¾ ŠµŃ‰Šµ Š½Š° ŠŗŠ°Š¶Š“Š¾Š¹ сŠ“ŠµŠ»ŠŗŠµ, Š¾Š½Šø сŠ½ŠøŠ¼Š°ŃŽŃ‚ Š“Š¾ŠæŠ¾Š»Š½ŠøтŠµŠ»ŃŒŠ½ŃƒŃŽ ŠŗŠ¾Š¼ŠøссŠøю. Š—Š“рŠ°Š²ŃŃ‚Š²ŃƒŠ¹Ń‚Šµ, ŠæрŠ¾ŃŠøŠ¼ уŠŗŠ°Š·Š°Ń‚ŃŒ Š½Š¾Š¼ŠµŃ€ Š’Š°ŃˆŠµŠ³Š¾ счŠµŃ‚Š° Š“Š»Ń ŠæрŠ¾Š²ŠµŃ€ŠŗŠø ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠø ŠæŠ¾ Š²Š°ŃˆŠµŠ¼Ńƒ ŠŗŠµŠ¹ŃŃƒ Šø рŠµŃˆŠµŠ½Šøя Š²ŃŠµŃ… Š½ŠµŠ“Š¾ŠæŠ¾Š½ŠøŠ¼Š°Š½ŠøŠ¹. ŠžŠ½Šø Š¾Š±ŠµŃ‰Š°ŃŽŃ‚ Š½ŠøŠ·ŠŗŠøŠµ сŠæрŠµŠ“ы Šø Š±Ń‹ŃŃ‚рыŠµ Š²Ń‹Š²Š¾Š“ы, Š½Š¾ этŠ¾ Š²ŃŠµ Š»Š¾Š¶ŃŒ. ŠšŠ°Šŗ тŠ¾Š»ŃŒŠŗŠ¾ рŠµŃˆŠøŠ» Š²Ń‹Š²ŠµŃŃ‚Šø 2500 USD, тŠ°Šŗ срŠ°Š·Ńƒ “тŠµŃ…Š½ŠøчŠµŃŠŗŠøŠµ Š½ŠµŠæŠ¾Š»Š°Š“ŠŗŠø”.

ŠŸŠ»Š°Š²Š°ŃŽŃ‰ŠøŠµ сŠæрŠµŠ“ы Šø Š³ŠøŠ±ŠŗŠ¾ŃŃ‚ŃŒ тŠ¾Ń€Š³Š¾Š²Š»Šø

Š”ŠµŠ¹Ń‡Š°Ń Š±Š°Š½ŠŗŠø, ŠæрŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŃŃŽŃ‰ŠøŠµ Š±Ń€Š¾ŠŗŠµŃ€ŃŠŗŠøŠµ усŠ»ŃƒŠ³Šø ŠæŠ¾Ń‚ŠøхŠ¾Š½ŃŒŠŗу Š½Š°Ń‡ŠøŠ½Š°ŃŽŃ‚ Š·Š°ŠæусŠŗŠ°Ń‚ŃŒ тŠ¾Ń€Š³Š¾Š²Š»ŃŽ фьючŠµŃ€ŃŠ°Š¼Šø. Š’Š¾Š¾Š±Ń‰Šµ-тŠ¾ чŠµŠ»Š¾Š²ŠµŠŗ ŠæрŠ¾ Š²Ń‹Š²Š¾Š“ тŠ¾Š¶Šµ ŠæŠøшŠµŃ‚, Š³Š»Š°Š·Š° рŠ°Š·ŃƒŠ¹. Š¢Ń‹ сŠ°Š¼ тŠ¾ ŠæŠ¾ŠæрŠ¾Š±Š¾Š²Š°Š» Š²Ń‹Š²ŠµŃŃ‚Šø хŠ¾Ń‚ŃŒ рŠ°Š· ŠøŠ»Šø тŠ¾Š»ŃŒŠŗŠ¾ Š·Š°ŠŗŠ°Š·Š½Ń‹Šµ ŠŗŠ¾Š¼Š¼ŠµŠ½Ń‚Ń‹ Š»ŠµŠæŠøшь? ŠÆ ŠæŠ¾Ń‡Ń‚Šø 3 (!) Š³Š¾Š“Š° с Š½ŠøŠ¼Šø Šø Š²Ń‹Š²Š¾Š“ŠøŠ» Š½Šµ Š¾Š“ŠøŠ½ рŠ°Š·, ŠæрŠµŠ“стŠ°Š²ŃŒ сŠµŠ±Šµ. ŠŸŃ€ŠøŠ“уŠ¼Š°Š¹ чŠµ ŠæŠ¾Š»ŃƒŃ‡ŃˆŠµ чтŠ¾ Š»Šø, ŠøŠ»Šø фŠ°Š½Ń‚Š°Š·ŠøŠø тŠ¾Š»ŃŒŠŗŠ¾ Š½Š° эту чушь хŠ²Š°Ń‚Š°ŠµŃ‚? Š•ŃŠ»Šø Š±Ń€Š¾ŠŗŠµŃ€ Š½Š°Š“ŠµŠ¶Š½Ń‹Š¹, ты хŠ¾Ń‚ŃŒ чтŠ¾ ŠµŠ¼Ńƒ ŠæрŠøŠæŠøсыŠ²Š°Š¹, Š¾Š½ Š¾ŃŃ‚Š°Š½ŠµŃ‚ся Š½Š°Š“ŠµŠ¶Š½Ń‹Š¼.

Š§Ń‚Š¾ тŠ°ŠŗŠ¾Šµ NDD

Š¤Š¾Ń€Š¼ŠøрующŠøŠµŃŃ Š² рŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Šµ Š¾Š³Ń€Š¾Š¼Š½Ń‹Šµ трŠ°Š½ŃŠ³Ń€Š°Š½ŠøчŠ½Ń‹Šµ Š“ŠµŠ½ŠµŠ¶Š½Ń‹Šµ ŠæŠ¾Ń‚Š¾ŠŗŠø сŠ¾Š·Š“Š°ŃŽŃ‚ Š¼Š¾Ń‰Š½Ń‹Š¹ ŠŗŠ°Š½Š°Š», ŠæŠ¾ ŠŗŠ¾Ń‚Š¾Ń€Š¾Š¼Ńƒ Š²Š½ŠµŃˆŠ½ŠøŠµ шŠ¾ŠŗŠø Š¼Š¾Š³ŃƒŃ‚ Š²Š»Šøять Š½Š° Š°ŠŗтŠøŠ²Ń‹ Šø рŠµŠ°Š»ŃŒŠ½ŃƒŃŽ эŠŗŠ¾Š½Š¾Š¼ŠøŠŗу тŠ¾Š¹ ŠøŠ»Šø ŠøŠ½Š¾Š¹ стрŠ°Š½Ń‹. Š Š¾ŃŃ‚ сŠæрŠ¾ŃŠ° Š¼ŠøрŠ¾Š²Ń‹Ń… ŠøŠ½Š²ŠµŃŃ‚Š¾Ń€Š¾Š² Š½Š° ŠµŠµ Š°ŠŗтŠøŠ²Ń‹ ŠæрŠøŠ²ŠµŠ“ŠµŃ‚ Šŗ ŠæрŠøтŠ¾Šŗу срŠµŠ“стŠ², ŠæŠ¾Š²Ń‹ŃˆŠµŠ½Šøю Š²Š°Š»ŃŽŃ‚Š½Š¾Š³Š¾ ŠŗурсŠ° Šø стŠ¾ŠøŠ¼Š¾ŃŃ‚Šø этŠøх Š°ŠŗтŠøŠ²Š¾Š², Š¾ŠæŠøсыŠ²Š°ŃŽŃ‚ тŠøŠæŠøчŠ½ŃƒŃŽ сŠøтуŠ°Ń†Šøю ŠžŠ±ŃŃ‚Ń„ŠµŠ»ŃŒŠ“ Šø Š§Š¶Š¾Ńƒ. Š’сŠµ этŠ¾ Š²Š»ŠøяŠµŃ‚ Š½Š° тŠ¾Ń€Š³Š¾Š²Ń‹Š¹ Š±Š°Š»Š°Š½Ń (Š¾ŃŠ»Š°Š±Š»ŃŃ ŠæŠ¾Š·ŠøцŠøŠø эŠŗсŠæŠ¾Ń€Ń‚ŠµŃ€Š¾Š² Šø усŠøŠ»ŠøŠ²Š°Ń ā€“ ŠøŠ¼ŠæŠ¾Ń€Ń‚ŠµŃ€Š¾Š²), Š²Š½ŃƒŃ‚Ń€ŠµŠ½Š½ŠøŠ¹ сŠ¾Š²Š¾ŠŗуŠæŠ½Ń‹Š¹ сŠæрŠ¾Ń, ŠøŠ½Ń„Š»ŃŃ†Šøю Šø фŠøŠ½Š°Š½ŃŠ¾Š²Ń‹Šµ усŠ»Š¾Š²Šøя. NDD (No Dealing Desk) ā€” этŠ¾ тŠøŠæ счŠµŃ‚Š° с ŠæряŠ¼Ń‹Š¼ Š“Š¾ŃŃ‚ŃƒŠæŠ¾Š¼ Šŗ Š¼ŠµŠ¶Š±Š°Š½ŠŗŠ¾Š²ŃŠŗŠ¾Š¼Ńƒ Š²Š°Š»ŃŽŃ‚Š½Š¾Š¼Ńƒ рыŠ½Šŗу, Š±ŠµŠ· ŠæрŠ¾ŠŗŠ»Š°Š“ŠŗŠø Š² Š²ŠøŠ“Šµ Š“ŠøŠ»ŠøŠ½Š³Š¾Š²Š¾Š³Š¾ цŠµŠ½Ń‚Ń€Š°.

ŠžŃ‚ŃŃƒŃ‚ŃŃ‚Š²ŠøŠµ Š·Š°Š“ŠµŃ€Š¶ŠµŠŗ ŠæŠ¾Š·Š²Š¾Š»ŃŠµŃ‚ Š²ŠµŃŃ‚Šø тŠ¾Ń€Š³Š¾Š²ŃƒŃŽ Š“ŠµŃŃ‚ŠµŠ»ŃŒŠ½Š¾ŃŃ‚ŃŒ ŠæŠ»Š°Š²Š½Š¾, Š±ŠµŠ· Š·Š°Š²ŠøсŠ°Š½Šøя сŠøстŠµŠ¼Ń‹, тŠ°Šŗ чтŠ¾ трŠµŠ¹Š“ŠµŃ€Ń‹ Š¼Š¾Š³ŃƒŃ‚ сŠ¾Š²ŠµŃ€ŃˆŠ°Ń‚ŃŒ сŠ“ŠµŠ»ŠŗŠø ŠæŠ¾ Š¶ŠµŠ»Š°ŠµŠ¼Ń‹Š¼ цŠµŠ½Š°Š¼ Š±ŠµŠ· ŠæрŠ¾ŃŠŗŠ°Š»ŃŒŠ·Ń‹Š²Š°Š½ŠøŠ¹. ŠŸŠž TerraLUNA Unity ŠæрŠµŠ“Š»Š°Š³Š°ŠµŃ‚ срŠµŠ“Š½ŃŽŃŽ сŠŗŠ¾Ń€Š¾ŃŃ‚ŃŒ ŠøсŠæŠ¾Š»Š½ŠµŠ½Šøя Š² Š½ŠµŃŠŗŠ¾Š»ŃŒŠŗŠ¾ Š¼ŠøŠ»Š»ŠøсŠµŠŗуŠ½Š“ Š¼ŠµŠ¶Š“у Š¼Š¾Š¼ŠµŠ½Ń‚Š¾Š¼ ŠæŠ¾Š»ŃƒŃ‡ŠµŠ½Šøя Š¾Ń€Š“ŠµŃ€Š° Šø ŠøсŠæŠ¾Š»Š½ŠµŠ½ŠøŠµŠ¼ сŠ“ŠµŠ»ŠŗŠø. Š’Š¾Š·Š¼Š¾Š¶Š½Š¾ŃŃ‚ŃŒ Š¾Ń‚ŠŗрыŠ²Š°Ń‚ŃŒ счŠµŃ‚Š° Š² Š»ŃŽŠ±Š¾Š¹ Š·Š°Š“Š°Š½Š½Š¾Š¹ Š²Š°Š»ŃŽŃ‚Šµ Š¾Š±ŃƒŃŠ»Š¾Š²Š»ŠµŠ½Š° сŠ¾Ń‚Ń€ŃƒŠ“Š½ŠøчŠµŃŃ‚Š²Š¾Š¼ ŠŗŠ¾Š¼ŠæŠ°Š½ŠøŠø сŠ¾ Š²ŃŠµŠ¼Šø ŠæŠ»Š°Ń‚ŠµŠ¶Š½Ń‹Š¼Šø Š¼ŠµŠ¶Š“уŠ½Š°Ń€Š¾Š“Š½Ń‹Š¼Šø сŠøстŠµŠ¼Š°Š¼Šø. Š’Ń‹ сŠ¼Š¾Š¶ŠµŃ‚Šµ Š¼Š¾Š¼ŠµŠ½Ń‚Š°Š»ŃŒŠ½Š¾ Š¾ŃŃƒŃ‰ŠµŃŃ‚Š²Šøть ŠæŠµŃ€ŠµŠ²Š¾Š“ Š“ŠµŠ½ŠµŠ¶Š½Ń‹Ń… срŠµŠ“стŠ² Š½Š° сŠ²Š¾Š¹ счŠµŃ‚ у Š±Ń€Š¾ŠŗŠµŃ€Š° с Š±Š°Š½ŠŗŠ¾Š²ŃŠŗŠ¾Š¹ ŠŗŠ°Ń€Ń‚Ń‹ сŠøстŠµŠ¼ VISAŠøŠ»Šø MasterCard, Š° тŠ°ŠŗŠ¶Šµ ŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚-сŠøстŠµŠ¼ Qiwi,Webmoney Šø Š“руŠ³ŠøŠµ. ŠŠøŠ¶Šµ ŠæрŠøŠ²ŠµŠ“ŠµŠ½ сŠŗрŠøŠ½ŃˆŠ¾Ń‚ с Š²ŠµŠ±-тŠµŃ€Š¼ŠøŠ½Š°Š»Š° Š±Ń€Š¾ŠŗŠµŃ€Š° Instaforex.com.

AI startup claims to enhance chatbot capabilities Digital Watch Observatory

AlphaGeometry: DeepMind’s AI Masters Geometry Problems at Olympiad Levels

symbolic ai

ā€œItā€™s possible to produce domain-tailored structured reasoning capabilities in much smaller models, marrying a deep mathematical toolkit with breakthroughs in deep learning,ā€ Symbolica Chief Executive George Morgan told TechCrunch. However, DeepMind paired AlphaGeometry with a symbolic AI engine, which uses a series of human-coded rules around how to represent data such as symbols, and then manipulate those symbols to reason. Symbolic AI is a relatively old-school technique that was surpassed by neural networks over a decade ago. AlphaGeometry builds on Google DeepMind and Google Researchā€™s work to pioneer mathematical reasoning with AI ā€“ from exploring the beauty of pure mathematics to solving mathematical and scientific problems with language models.

symbolic ai

The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. You can foun additiona information about ai customer service and artificial intelligence and NLP. No use, distribution or reproduction is permitted which does not comply with these terms. 7This is closely related to the discussion on the theory of linguistic relativity (i.e., Sapirā€“Whorf hypothesis)Deutscher (2010).

Are 100% accurate AI language models even useful?

Building on the foundation of its predecessor, AlphaGeometry 2 employs a neuro-symbolic approach that merges neural large language models (LLMs) with symbolic AI. This integration combines rule-based logic with the predictive ability of neural networks to identify auxiliary points, essential for solving geometry problems. The LLM in AlphaGeometry predicts new geometric constructs, while the symbolic AI applies formal logic to generate proofs. Neuro-Symbolic AI represents a transformative approach to AI, combining symbolic AIā€™s detailed, rule-based processing with neural networksā€™ adaptive, data-driven nature. This integration enhances AIā€™s capabilities in reasoning, learning, and ethics and opens new pathways for AI applications in various domains.

By presuming joint attention, the naming game, which does not require explicit feedback, operates as a distributed Bayesian inference of latent variables representing shared external representations. Still, while RAR helps address these challenges, it’s important to note that the knowledge graph needs input from a subject-matter expert to define what’s important. It also relies on a symbolic reasoning engine and a knowledge graph to work, which further requires some modest input from a subject-matter expert. However, it does fundamentally alter how AI systems can address real-world challenges. It incorporates a more sophisticated interaction with information sources and actively and logically reasons in a human-like manner, engaging in dialogue with both document sources and users to gather context.

Major Differences between AI and Neural Networks

ChatGPT App lacked the learning capabilities and flexibility to navigate complex, real-world environments. You were also limited in how you could address these systemsā€”only able to inject structured data with no support for natural language. Evaā€™s Multimodal AI agents can understand natural language, and facial expressions, recognize patterns in user behavior, and engage in complex conversations.

  • Neuro-symbolic AI offers hope for addressing the black box phenomenon and data inefficiency, but the ethical implications cannot be overstated.
  • Remember for example when I mentioned that a youngster using deductive reasoning about the relationship between clouds and temperatures might have formulated a hypothesis or premise by first using inductive reasoning?
  • Subsequently, Taniguchi et al. (2023b) expanded the naming game by dubbing it the MH naming game.
  • This explosion of data presents significant challenges in information management for individuals and corporations alike.
  • According to psychologist Daniel Kahneman, “System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control.” It’s adept at making rapid judgments, which, although efficient, can be prone to errors and biases.

As AI continues to take center stage in 2024, leaders must embrace its potential across all functions, including sales. Some of the most high-potential generative AI experiences for large enterprises, use vetted internal data to generate AI-enabled answers ā€“ unlike open AI apps that pull for the public domain. Sourcing data internally is particularly important for enterprise organizations that are reliant on market and consumer research to make business decisions. For organizations stuck in this grey space and cautiously moving forward, now is the time to put a sharp focus on data fundamentals like quality, governance and integration.

3 Organizing a symbol system through semiotic communications

Thus, playing such games among agents in a distributed manner can be interpreted as a decentralized Bayesian inference of representations shared by a multi-agent system. Moreover, this study explores the potential link between the CPC hypothesis and the free-energy principle, positing that symbol emergence adheres to the society-wide free-energy principle. Furthermore, this paper provides a new explanation for why large language models appear to possess knowledge about the world based on experience, even though they have neither sensory organs nor bodies. This paper reviews past approaches to symbol emergence systems, offers a comprehensive survey of related prior studies, and presents a discussion on CPC-based generalizations. Future challenges and potential cross-disciplinary research avenues are highlighted.

  • Several methods have been proposed, including multi-agent deep deterministic policy gradient (MADDPG), an extension of the deep reinforcement learning method known as deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015; Lowe et al., 2017).
  • For example, it might consider a patient’s medical history, genetic information, lifestyle and current health status to recommend a treatment plan tailored specifically to that patient.
  • It maps agent components to neural network elements, enabling a process akin to backpropagation.
  • Traditional symbolic AI solves tasks by defining symbol-manipulating rule sets dedicated to particular jobs, such as editing lines of text in word processor software.
  • Personally, and considering the average person struggles with managing 2,795 photos, I am particularly excited about the potential of neuro-symbolic AI to make organizing the 12,572 pictures on my own phone a breeze.

Those systems were designed to capture human expertise in specialised domains. They used explicit representations of knowledge and are, therefore, an example of whatā€™s called ChatGPT. Although open-source AI tools are available, consider the energy consumption and costs of coding, training AI models and running the LLMs. Look to industry benchmarks for straight-through processing, accuracy and time to value. In other words, large language models ā€œunderstand text by taking words, converting them to features, having features interact, and then having those derived features predict the features of the next word ā€” that is understanding,ā€ Hinton said.

Importantly, from a generative perspective, the total PGM remained an integrative model that combined all the variables of the two different agents. Further additional algorithmic details are provided by (Hagiwara et al., 2019; Taniguchi et al., 2023b). Hintonā€™s work, along with that of other AI innovators such as Yann LeCun, Yoshua Bengio, and Andrew Ng, laid the groundwork for modern deep learning. A more recent development, the publication of the ā€œAttention Is All You Needā€ paper in 2017, has profoundly transformed our understanding of language processing and natural language processing (NLP). In contrast to the intuitive, pattern-based approach of neural networks, symbolic AI operates on logic and rules (“thinking slow”). This deliberate, methodical processing is essential in domains demanding strict adherence to predefined rules and procedures, much like the careful analysis needed to uncover the truth at Hillsborough.

The weight of each modality is important for integrating multi-modal information. For example, to form the concept of ā€œyellow,ā€ a color sense is important, whereas haptic and auditory information are not necessary. A combination of MLDA and MHDP methods has been proposed and demonstrated to be capable of searching for appropriate correspondences between categories and modalities (Nakamura et al., 2011a; 2012). After performing multi-modal categorization, the robot inferred through cross-modal inferences that a word corresponded to information from other modalities, such as visual images. Thus, multi-modal categorization is expected to facilitate grounded language learning (Nakamura et al., 2011b; 2015).

Optimization was performed by minimizing the free energy DKL[q(z,w)ā€–p(z,w,oā€²)]. Et al. (2023) and Ebara et al. (2023) extended the MH naming game and proposed a probabilistic emergent communication model for MARL. Each agent (human) predicts and encodes environmental information through interactions using symbolic ai sensory-motor systems. Simultaneously, the information obtained in a distributed manner is collectively encoded as a symbolic system (language). When viewing language from the perspective of an agent, each agent plays a role similar to a sensory-motor modality that acts on the environment (world).

Symbolica hopes to head off the AI arms race by betting on symbolic models – TechCrunch

Symbolica hopes to head off the AI arms race by betting on symbolic models.

Posted: Tue, 09 Apr 2024 07:00:00 GMT [source]

Despite limited data, these models are better equipped to handle uncertainty, make informed decisions, and perform effectively. The field represents a significant step forward in AI, aiming to overcome the limitations of purely neural or purely symbolic approaches. Recently, large language models, which are attracting considerable attention in a variety of fields, have not received a satisfactory explanation as to why they are so knowledgeable about our world and can behave appropriately Mahowald et al. (2023). Gurnee and Tegmark (2023) demonstrated that LLMs learn representations of space and time across multiple scales. Kawakita et al. (2023); Loyola et al. (2023) showed that there is considerable correspondence between the human perceptual color space and the feature space found by language models. The capabilities of LLMs have often been discussed from a computational perspective, focusing on the network structure of transformers (Vaswani and Uszkoreit, 2017).

Following the success of the MLP, numerous alternative forms of neural network began to emerge. An important one was the convolutional neural network (CNN) in 1998, which was similar to an MLP apart from its additional layers of neurons for identifying the key features of an image, thereby removing the need for pre-processing. Adopting a hybrid AI approach allows businesses to harness the quick decision-making of generative AI along with the systematic accuracy of symbolic AI. This strategy enhances operational efficiency while helping ensure that AI-driven solutions are both innovative and trustworthy. As AI technologies continue to merge and evolve, embracing this integrated approach could be crucial for businesses aiming to leverage AI effectively.

A tiny new open-source AI model performs as well as powerful big ones

Perhaps the inductive reasoning might be more pronounced by a double-barrel dose of guiding the AI correspondingly to that mode of operation. I trust that you can see that the inherent use of data, the data structures used, and the algorithms employed for making generative AI apps are largely reflective of leaning into an inductive reasoning milieu. Generative AI is therefore more readily suitable to employ inductive reasoning for answering questions if thatā€™s what you ask the AI to do. An explanation can be an after-the-fact rationalization or made-up fiction, which is done to satisfy your request to have the AI show you the work that it did.

symbolic ai

AlphaGeometry marks a leap toward machines with human-like reasoning capabilities. In this tale, Foo Foo is in a near distant future when artificial intelligence is helping humanity survive and stay present in the world. When things turn dark, Foo Foo is the AI plant-meets-animal who comes to humanity’s aid in a moment of technological upheaval.

symbolic ai

However, they often function as ā€œblack boxes,ā€ with decision-making processes that lack transparency. With AlphaGeometry, we demonstrate AIā€™s growing ability to reason logically, and to discover and verify new knowledge. Solving Olympiad-level geometry problems is an important milestone in developing deep mathematical reasoning on the path towards more advanced and general AI systems. We are open-sourcing the AlphaGeometry code and model, and hope that together with other tools and approaches in synthetic data generation and training, it helps open up new possibilities across mathematics, science, and AI. While AlphaGeometry showcases remarkable advancements in AIā€™s ability to perform reasoning and solve mathematical problems, it faces certain limitations. The reliance on symbolic engines for generating synthetic data poses challenges for its adaptability in handling a broad range of mathematical scenarios and other application domains.

symbolic ai

Symbolic AI needs well-defined knowledge to function, in other words ā€” and defining that knowledge can be highly labor-intensive. Conversely, in parallel models (Denes-Raj and Epstein, 1994; Sloman, 1996) both systems occur simultaneously, with a continuous mutual monitoring. So, System 2-based analytic considerations are taken into account right from the start and detect possible conflicts with the Type 1 processing. That huge data pool was filtered to exclude similar examples, resulting in a final training dataset of 100 million unique examples of varying difficulty, of which nine million featured added constructs. With so many examples of how these constructs led to proofs, AlphaGeometryā€™s language model is able to make good suggestions for new constructs when presented with Olympiad geometry problems. According to Howard, neuro-symbolic artificial intelligence is simply a fusion of styles of artificial intelligence.

While LLMs have made significant strides in natural language understanding and generation, theyā€™re still fundamentally word prediction machines trained on historical data. They are very good at natural language processing and adequate at summarizing text yet lack the ability to reason logically or provide comprehensive explanations for their predicted outputs. Whatā€™s more, thereā€™s nothing on the technical road map that looks to be able to tackle this, not least because logical reasoning is accepted as not being a generalized problem.

RESERVA
Abrir el chat